Interview : Serge Zaka, agroclimatologue, président d’AgroClimat2050
Ce scientifique est intervenu lors de la journée technique de Concerto le 24 novembre dernier. En quoi ce projet piloté par Terres Inovia a valeur d’exemple ? Interview.
Serge Zaka, on vous définit comme un lanceur d’alerte, comment l’expliquer ?
Je suis un scientifique. Comme je travaille sur l’avenir, toujours de façon sourcée et chiffrée, je suis qualifié de lanceur d’alerte. Mais cette dénomination pourrait aussi être appliquée à un agriculteur qui innove et qui essaie d’avertir les autres producteurs sur la nécessité de développer la fertilité du sol, d’avoir une approche paysagère, de bien choisir ses variétés, de mettre en place une agriculture de conservation des sols pour adapter l’agriculture au changement climatique.
Pourquoi vous êtes-vous intéressé aux travaux de Concerto ?
Je suis un scientifique de terrain et j’aime aller voir les terres agricoles. C’est bien plus impactant d’intervenir au cœur des campagnes au plus proche des problématiques des producteurs, que dans une salle parisienne de 1000 personnes. Derrière les territoires, il y a des projets tellement intéressants.
En quoi les leviers mis en place par le projet Concerto vont dans le bon sens pour s’adapter au changement climatique ?
En amont de cette conférence, j’ai beaucoup discuté avec les pilotes du projet de Terres Inovia sur les problématiques qu’ils travaillent: les ravageurs, les insectes auxiliaires, les paysages, les haies, les oiseaux… Ce qui est intéressant, c’est que ce projet travaille sur un écosystème. En mettant en place des solutions liées aux insectes auxiliaires et aux paysages, Concerto travaille aussi sur l’eau, l’évapotranspiration, le microclimat de la parcelle. Les solutions proposées par Concerto peuvent résoudre beaucoup de problèmes environnementaux, écosystémiques et climatiques. Ce sont des leviers qui permettent une vraie adaptation au changement climatique.

Comment généraliser ces pratiques au-delà du groupe d’agriculteurs impliqué dans le projet ?
Certains agriculteurs seront davantage sensibilisés par le climat, d’autres sur l’écosystème ou le stockage du carbone… Or, les problèmes à résoudre, qu’ont les agriculteurs, chacun de leur côté, peuvent être résolus par un seul levier, qui peut solutionner plusieurs problèmes à la fois. Par exemple, investir dans une haie joue à la fois sur l’eau, la biodiversité, la qualité du sol, les nappes phréatiques, les ravageurs.
Ils peuvent alors servir d’exemple ?
Oui, Concerto est un exemple de terrain sur un territoire complet. Souvent, les agriculteurs ne savent pas par où commencer. Ce qui est intéressant dans ce projet, c’est de savoir qu’il est possible d’actionner ces leviers à l’échelle d’un paysage, collectivement. Il peut alors être un exemple qui peut être transposé à d’autres territoires dans lesquels il est possible de concilier la rentabilité économique et la gestion vertueuse des paysages.
Est-ce qu’il existe une agriculture idéale ?
Non, aucune forme d’agriculture ne peut répondre à la fois à des exigences liées à l’environnement, au climat, à la main d’œuvre, aux coûts, au rendement… Il y a tellement d’éléments à prendre en compte que l’objectif est juste de trouver le meilleur compromis.

Qui est Serge Zaka ?Serge Zaka est un ingénieur agronome, docteur en agroclimatologie et chasseur d'orages franco-libanais. Après ses études, il se fait connaître en tant que lanceur d'alerte sur les impacts du changement climatique sur la production agricole. Il tente de sensibiliser aux effets du changement climatique et de lutter contre les discours climatosceptiques. Il est l’auteur d’une thèse sur l’impact de la température sur les espèces fourragères à partir d’expérimentations en chambres de culture et de modélisations et se spécialise dans l’impact des paramètres climatiques, notamment le stress thermique et hydrique. Très suivi sur les réseaux sociaux (son compte X totalise plus de 100 000 abonnés), il s’est fait connaître dans les milieux agricoles et politiques en alertant de l’impact du gel sur la production agricole.
|
Retrouvez Serge Zaka en vidéo
Terres Inovia se mobilise pour l’agriculture numérique
Suivi des cultures, gestion des intrants, prédictions climatiques… Le numérique dote les agriculteurs d’outils pour permettre aux cultures d’être plus compétitives.
Accélérer le développement de solutions innovantes
Pour faire émerger ces nouvelles technologies dans le monde agricole, Terres Inovia est partenaire, avec La ferme digitale et Sofiprotéol, du 3ème appel à projets proposant des solutions innovantes et concrètes pour les oléo-protéagineux. L’objectif : accélérer le développement de solutions innovantes pour répondre aux enjeux prioritaires de ces cultures, la recherche d’alternatives aux produits phytosanitaires pour la gestion des bioagresseurs et de solutions d’adaptation au changement climatique et à l’enjeu de décarbonation.
Ce nouvel appel à candidatures se clôturera le 15 décembre 2025. La date limite pour répondre à l’appel à manifestation d’intérêt est le 10 novembre. Comme l’an dernier, les lauréats de cet appel à projets seront divulgués en février à l’occasion du Salon international de l’agriculture. Une enveloppe globale de 250 000 euros issue du FASO, le fonds interprofessionnel géré par Sofiprotéol, sera consacrée à soutenir de 2 à 5 projets.
Trois thématiques centralesLes projets innovants devront porter sur les trois axes choisis par l’appel à projets : • L’adaptation aux effets du changement climatique à court et moyen terme : ajuster les rotations ou les assolements, prédire les risques, économiser des intrants, optimiser la fertilisation azotée, anticiper les besoins hydriques des cultures, suivre les itinéraires techniques et la qualité des récoltes… • L’optimisation de la gestion des bioagresseurs au travers des outils numériques : favoriser l’intégration des leviers agronomiques comme les biosolutions dans les programmes de traitement, évaluer de nouvelles substances actives grâce à l’intelligence artificielle… • Le développement de solutions pour la gestion et le suivi des dégâts d’oiseaux au moment des semis afin concevoir des stratégies de gestion efficaces. Elles interviennent alors à l’échelle des territoires plutôt qu’à celle de la parcelle.
|
Le rôle de Terres Inovia : un expert scientifique et une remontée des besoins du terrain
Pour Terres Inovia, l’objectif de cet appel à projets est « de faire émerger les nouvelles technologies numériques appliquées à l’agricultures, mais surtout d’intéresser les entreprises numériques aux oléo-protéagineux, précise Jean-Eudes Hollebecq, ingénieur en nouvelles technologies en agriculture chez Terres Inovia. Des innovations sur la fertilisation ou les atouts d’insérer des légumineuses dans des systèmes de culture concernent notre filière, mais peuvent aussi s’adapter à d’autres car ils permettent de gérer les bioagresseurs ».
Terres Inovia est un partenaire actif de cet appel à projets. « Nous contribuons à définir les enjeux de recherche prioritaires de l’appel à projets et participons au comité de pilotage pour émettre un avis scientifique sur les projets déposés ».
L’institut technique apporte ainsi une expertise technique, mais aussi des remontées des besoins du terrain : « Terres Inovia aide à définir les besoins prioritaires comme l’adaptation au changement climatique, la gestion de la fertilisation, la valorisation de pratiques agricoles vertueuses et durables, la gestion des bioagresseurs ».
Le rôle de Terres Inovia ne s’arrête pas là. « Nous regardons, dans la sélection des dossiers, la faisabilité technique, s’il y a un apport nouveau et innovant et si cela répond aux besoins des agriculteurs ».
Une fois les lauréats sélectionnés, un référent technique de l’institut est même chargé de suivre le projet. Il peut ainsi apporter son expertise, proposer des évolutions et trouver éventuellement des synergies avec d’autres travaux de Terres Inovia.

Des capteurs pour observer les insectes sur la plateforme de phénotypage de Toulouse, un exemple des travaux de Terres Inovia sur l'agriculture numérique
Pourquoi ce partenariat ?Jean-Eudes Hollebecq, ingénieur pour les nouvelles technologies en agriculture de Terres Inovia « Ce partenariat apporte à notre institut une vraie veille technologique sur les outils innovants dans le domaine de l’agriculture numérique. Il permet aussi d’orienter les travaux des entreprises numériques sur les problématiques rencontrées sur les oléo-protéagineux » |
- Consulter le dossier de candidature
- Candidatures à envoyer à camille.jouan@sofiproteol.com
- Le retour auprès des porteurs de projets s’effectuera en janvier 2026 et l’annonce officielle des lauréats se déroulera lors du Salon international de l’agriculture 2026.
Zoom sur Séléopro : accompagner la recherche semencière
Ce dispositif de soutien à la recherche semencière est un levier stratégique pour développer des variétés plus performantes pour le colza et le tournesol. Au moment où Séléopro publie son rapport d’activité, coup de projecteur sur le rôle central de Terres Inovia, avec Martine Leflon, responsable du département génétique et protection des cultures de Terres Inovia.
Lors du Carrefour tournesol de Séléopro, organisé à Auzeville (31), les 10 et 11 février 2025
Séléopro vient de publier son rapport d’activité. Pouvez-vous nous dire quel est l’objectif de ce dispositif ?
Sa vocation est d’orienter et de soutenir les travaux des équipes de recherche sur des thématiques d’importance pour le colza et le tournesol pour favoriser l’innovation variétale et permettre à ces deux cultures d’être plus compétitives.
Comment, concrètement, ce dispositif est un levier stratégique pour soutenir la recherche semencière ?
Le dispositif finance et oriente les actions de recherche, par le biais de ses appels à projets et de son comité scientifique. L’objectif est d’apporter des connaissances et des outils pour améliorer les variétés ou les méthodes de sélection. Financé par Sofiproteol pour le compte du Fonds d’Actions Stratégiques des Oléagineux et Protéagineux (FASO), Terres Univia, Terres Inovia et l’Union Française des Semenciers, c’est un lieu d’échanges entre les acteurs de la filière, la recherche publique et les entreprises privées comme les semenciers. Ce dispositif permet de créer ce lien précieux pour faire avancer la recherche sur les variétés. Cette synergie, c’est la force de Séléopro, et c’est ça qui permet de rendre nos cultures plus compétitives grâce à la recherche.
Quel est le rôle de Terres Inovia ?
En plus d’être co-financeur du dispositif, Terres Inovia participe au comité scientifique, qui sélectionne les projets dans le cadre de ses appels à projets. Mais surtout, notre rôle est d’encourager les échanges entre les équipes de recherche publique et les sélectionneurs pour créer des communautés de recherche sur ces deux cultures : nous animons au sein de Séléopro une commission colza et une commission tournesol, auxquelles ne participent que des volontaires, privés ou publics, pour partager des visions sur les travaux à mener ou des informations sur des actions en cours. Nous organisons chaque année les carrefours de la sélection (colza et tournesol) qui permettent via du partage d’informations et des échanges informels, de créer et de maintenir une réelle communauté de recherche sur ces cultures, avec à la clé de nouvelles idées et de nouvelles collaborations.
Quatre grands thèmes de recherche
|
Pour en savoir plus sur Séléopro
Séléopro : la recherche semencière au coeur des enjeux de Terres Univia
Séléopro, moteur d'une recherche semencière oléagineuse ciblée et collaborative
La présentation synthétique de Séléopro
Revivez les Carrefours du colza et du tournesol 2025
Atténuation du changement climatique
Comme les activités humaines ont une part conséquente sur le dérèglement climatique, la décarbonation des activités humaines peut permettre de temporiser le changement à venir, c’est à dire pouvoir encore vivre et produire dans 30 et 50 ans, dans le cas où l’on agit maintenant.
Atténuer le changement climatique signifie réduire les émissions de gaz à effet de serre (GES), en réduisant avant tout le volume émis et en cherchant à compenser les émissions résiduelles par des actions de séquestration de carbone sur le long terme.
Un enjeu international à investir localement
Le Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC) estime que l’on peut encore limiter le réchauffement planétaire en dessous de 2-3°C d’augmentation par rapport à la période préindustrielle si des décisions sont prises aujourd’hui. Leurs rapports ont souligné l’urgence à réagir avec des transformations radicales et immédiates de tous nos secteurs de la société. Les actions politiques, citoyennes, industrielles et techniques doivent être combinées et accélérées, tout en les faisant davantage converger pour être efficaces.
De façon inédite, en signant l’Accord de Paris lors de la COP211, les principaux états du monde se sont accordés à fixer des objectifs de réduction de leurs émissions de gaz à effet de serre (GES) d’ici 2050 et à maintenir le réchauffement sous la barre des 2°C d’ici à 2100.
Toute action locale, individuelle ou collective, participe à l’effort d’atténuation.
En France, plusieurs mesures ont été engagées : engagement français sur un "facteur 4" des émissions de GES d’ici 2050 issu du Grenelle de l'environnement, Plan pour la Transition Agroécologique, Stratégie Nationale Bas Carbone (SNBC) du gouvernement, programme « 4 pour 1000 »2 pour la séquestration du carbone organique dans les sols, dimension climat de la PAC, l’affichage environnemental des produits, des engagements de filières agroalimentaires (RSE, contribution à l’atténuation, etc.).
Aujourd’hui, les ambitions doivent se renforcer pour viser la « neutralité carbone » à l’horizon 2050, c’est-à-dire ne pas émettre plus que ce que l’on peut séquestrer, ambition de l’Union Européenne définie dans le Pacte vert européen (GreenDeal). C’est en ce sens que l’état et les acteurs publics et privés travaillent actuellement à la définition de la troisième SNBC de la France (SNBC3) avec des feuilles de route de décarbonation par secteur pour y contribuer.
Quels sont les gaz à effet de serre liés aux activités agricoles et les processus en jeu ?
Le secteur agricole a une part de responsabilité dans les émissions de GES et il est en même temps une des solutions qui peuvent contribuer à atténuer ce changement climatique à la fois en limitant les émissions de ses activités mais aussi en augmentant le stockage de carbone dans les sols notamment.
Figure : Les principaux secteurs émetteurs de GES en France (Source CITEPA 2022).
Les émissions issues du secteur agricole sont composées principalement de trois gaz à effet de serre (GES) : le dioxyde de carbone (CO2), le protoxyde d’azote (N2O) et le méthane (CH4) (Figure 1). Etant donné que chaque GES a un « pouvoir réchauffant » différent, leur effet est ramené à une même unité, la quantité de « tonne équivalent CO2 » pour faciliter les agrégations et l’analyse de l’impact final sur le changement climatique. Par exemple le protoxyde d’azote est 298 fois plus puissant que le CO2 en termes d’effet de serre.
Le secteur agricole contribue pour 20,6% des émissions de la France, tous GES confondus (Rapport Secten 2022 du CITEPA. L’agriculture est un émetteur prépondérant pour les émissions de méthane (CH4) et de protoxyde d’azote (N2O), deux gaz à effet de serre qui ont les plus forts pouvoirs échauffants : en 2018, ce secteur représente de 68% des émissions de méthane françaises et 88,6% des émissions de protoxyde d’azote françaises. Les élevages sont les sources principales de méthane alors que les grandes cultures sont la source majeure de protoxyde d’azote en agriculture.
Par ailleurs les sols agricoles représentent un des plus forts potentiels de stockage de carbone en France (étude 4 pour mille de l’INRAE).
Figure : Sources d’émissions de GES et pouvoir réchauffant (IPCC 2018)
Au sein des différents GES liés à l’activité agricole, c’est le protoxyde d’azote (N2O) qui est le principal GES pour les productions agricoles. Et les cultures arables sont responsables de 50% des émissions anthropiques de N2O.
Le protoxyde d’azote est issu des processus naturels du fonctionnement du sol au cours des transformations de l’azote dans le sol sous l’action des bactéries lors de la nitrification et de la dénitrification. Cependant les émissions anthropiques de N2O au champ résultent de l’augmentation forte de ces processus naturels notamment après l’apport de fertilisants azotés sur la parcelle, surtout en conditions de température et d’humidité favorable aux processus bactériens. La mobilisation d’engrais azotés représente la source majoritaire des émissions de N2O sur les ateliers grandes cultures. Il a été quantifié que la fertilisation représente 70-90% des GES d’un produit agricole dans le cas où il a nécessité des apports azotés.
La production d’engrais étant très énergivore, l’enjeu sur le changement climatique est également très lié à l’enjeu « réduction de la consommation d’énergie non renouvelable ».
De façon plus minoritaire, les combustibles mobilisés lors de travaux agricoles (tracteurs, irrigation, etc.) participent à des émissions de CO2.
En quoi le secteur agricole peut être une solution de stockage de carbone ?
Le stockage du carbone dans les sols est lié à la dynamique des sols et aux pratiques modulant le retour de la matière organique au sol qui peut favoriser l’augmentation de la part de carbone stable dans les sols. En effet, par le processus de la photosynthèse, nécessaire à leur croissance, les plantes capturent le CO2 et le carbone devient alors constitutif de la plante. Si une partie est exportée à travers la récolte, une partie de la biomasse (racines, pailles) reste dans la parcelle. Cette biomasse va se dégrader en libérant du dioxyde de carbone (CO2) et des composés organiques qui, en se décomposant sous l’influence du climat et des conditions ambiantes du sol, vont évoluer sous des formes plus stables telles que l'humus, permettant un stockage du carbone dans les sols dans le temps. Les matières organiques d’origine résiduaire (effluents d’élevage ou résidus industriels ou urbains) utilisées comme intrants sur les cultures sont aussi des entrées potentielles de carbone avec des dynamiques spécifiques selon leur composition. L’évolution du stock de carbone organique dans les sols résulte donc de l’équilibre entre les apports de matières organiques au sol et leur minéralisation.
Figure 2 : Paramètres pris en compte pour évaluer le stockage du carbone dans les sols (Label bas-carbone Grandes Cultures)
|
Pour les productions végétales, l’azote est un élément nutritif clé pour la productivité agricole et les engrais azotés constituent un élément explicatif majeur des impacts environnementaux (émissions des gaz à effet de serre, pollution des eaux et des milieux naturels, santé des agriculteurs et des citoyens). Favoriser la mobilisation de l’azote utile pour la nutrition des plantes via des processus agroécologiques (comme la fixation biologique) ou via le recyclage de l’azote déjà en jeu permettrait de limiter la nécessité de produire de l’azote industriellement : on parle de « re-boucler le cycle de l’azote », afin d’éviter les excès d’azote à l’origine des pollutions et les consommations d’énergie fossiles énormes nécessaires au processus Haber-Bosch utilisés pour faire des engrais azotés industriels. Le carbone est un enjeu à la fois pour la séquestration de carbone afin de compenser les émissions résiduelles de l’agriculture, et également pour viser une augmentation de la matière organique, ingrédient clé de la fertilité des sols.
|
Les leviers d’atténuation de changement climatique en grandes cultures
Dans le secteur des grandes cultures, à l’occasion des travaux en lien avec le Label bas carbone, les leviers majeurs d’atténuation ont été identifiés pour les conditions françaises et sont listés ci-après :
- Réduire la dose d’azote minérale apportée sur les cultures
- Améliorer l’efficacité de l’azote apporté et valorisé par la plante
- Chauler les sols à pH acide (cas des pH-initiaux < 6.8 et dans l’objectif d’atteindre 6.8)
- Introduire des légumineuses dans la rotation ou des cultures/variétés à faible besoin en azote
- Réduire la consommation de combustibles fossiles associées aux engins et à l’irrigation (fioul, GNR, gaz)
- Réduire la consommation de combustibles fossiles associées au séchage et au stockage (à ferme ou chez OS)
- Augmenter la quantité de biomasse restituée par les couverts végétaux
- Augmentation des restitutions par les résidus de cultures
- Augmentation des apports de matières amendantes ou fertilisantes d’origine résiduaire
- Insertion et allongement des prairies temporaires et artificielles dans les rotations.
A privilégier : les cultures fixatrices d’azote ou à fort retour de biomasse au sol
Les systèmes de production incluant des cultures économes en intrants azotés (légumineuses et tournesol) ou rapportant beaucoup de matières organiques au sol (couverts ou colza) sont bien placés pour participer à l’atténuation du changement climatique.
Terres Inovia s’est engagé fortement sur la question de l’atténuation du changement. L’institut est, en effet, membre du Club Climat Agriculture et du Comité de rédaction de la méthode sectorielle Grandes cultures. Il accompagne également toute personne intéressée par des projets qui peuvent apporter une rémunération supplémentaire aux agriculteurs s’engageant dans des systèmes et pratiques agricoles réduisant les émissions de gaz à effet de serre.
Ainsi, Terres Inovia s’engage pour accompagner la transition écologique avec les acteurs volontaires pour viser :
- des réductions effectives et certaines d’émissions de GES avec les légumineuses à graines (soja, pois, féverole, lupin, lentille et pois chiche) d’abord par évitement d’émissions de GES liées à l’absence d’apports d’engrais azotés sur les cultures de légumineuses à graines et ensuite par réduction sous les cultures qui les suivent dans la rotation culturale. Il y a, en effet, moins d’émissions de N2O et de CO2 au champ et en amont que dans le cas des systèmes sans légumineuses à graines. Des études antérieures avaient estimé qu’inclure une légumineuse à graines dans un système de culture peu diversifié permet une réduction de 8 à 25% de GES.
- la séquestration de carbone permise par la présence de colza ou encore l’ajout de couverts végétaux au sein des agrosystèmes : le colza favorise le retour de la biomasse au sol via ses résidus de culture et peut donc participer au maintien ou au stockage de carbone dans les sols sur le long terme, d’autant plus s’il est associé à des légumineuses gélives.
Comment accélérer la transition vers un réduction des émissions de GES ?
Face à l’urgence d’agir pour atténuer ce dérèglement climatique lié au GES, des mécanismes d’incitation ont été mises en place pour des actions collectives ou individuelles. Il existe d’une part des objectifs réfléchis à l’échelle des Etats. Dans le cas de la France, la feuille de route pour lutter contre le changement climatique s’appelle la Stratégie Nationale Bas Carbone de la France (SNBC), dont l’ambition est en cours de révision à la hausse afin de viser la neutralité carbone à l’horizon 2050 comme définie par l’Union Européenne : « ne pas émettre plus de GES que ce que l’on peut compenser par de la séquestration ». Ainsi chaque secteur d’activité a un objectif de réduction de ses émissions de GES par rapport à 2015 : il est de +46% pour l’agriculture.
En parallèle, ont été développés des mécanismes d’attribution d’une plus-value économique pour un acteur pro-actif qui apporte volontairement sa contribution à l’atténuation du changement climatique. Pour faciliter l’accès du monde agricole au marché volontaire du carbone qui permet de vendre des crédits carbone (équivalent à des tonnes de CO2 évitées), la France porte le Label bas carbone (voir lien ci-dessous) : ce cadre méthodologique clarifie la façon de comptabiliser des Réductions d’Emissions de GES qu’un projet territorial vend de gré à gré.
Terres Inovia participe à la définition des méthodologies utilisables dans un projet agricole qui met en place de pratiques vertueuses qui sont sources de réduction d’émissions de GES. L’Institut poursuit également des études de quantification des réductions d’émissions qu’un agriculteur peut permettre selon les leviers considérés. Avec ses partenaires, les quantifications des crédits carbone sont estimés selon les contextes pour des projets utilisant la méthode Label bas carbone Grandes cultures. Par ailleurs, les instituts techniques agricoles français dont Terres Inovia sont impliqués dans des actions de recherche à l’échelle régionale, nationale ou européenne pour l’accompagnement à la transition intégrant la dimension carbone. Par exemple Terres Inovia est partenaire de projets européens d’envergure, dont ClieNFarms, lauréat d’un appel à proposition du GreenDeal, qui a démarré en 2022 pour 4 ans sous la coordination de l’INRAE.
En savoir plus sur les enjeux d’atténuation:
Le Label bas carbone, qu’est-ce que c’est ?
Webinaire : Quel rôle des oléagineux et des légumineuses face à l’enjeu carbone – septembre 2022 :
ClieNFarms : vers la neutralité carbone avec les exploitations agricoles
Documents à télécharger
Adaptation au changement climatique
Quelles sont les stratégies pour augmenter la robustesse des cultures et la résilience des systèmes ?
A l’échelle de chaque culture
Les premiers effets du changement climatique s’observent au niveau de l’évolution des rendements des cultures. Ainsi, d’après Baillet et al., 2021, pour le colza, le rendement moyen annuel ralentit depuis la fin des années 80 alors que celui du pois affiche une nette tendance à la baisse depuis les années 2000. Quant au tournesol, son rendement apparaît relativement stable depuis le début des années 90, en lien avec un progrès génétique important et une capacité à valoriser l’eau, la lumière et le CO2.
L'élévation des températures accroît la période d'assèchement des sols et les cultures oléo-protéagineuses, comme d’autres espèces, sont plus souvent exposées au stress hydrique.
Ainsi, pour le colza, le déficit de précipitations au moment de l’implantation est un souci majeur. Ce phénomène touche déjà fortement les surfaces. Pour limiter l'assèchement des sols, Terres Inovia préconise une préparation aussitôt après la récolte de la culture précédente, une limitation du nombre de passages d'outil, un roulage, notamment en sol argileux et à semer tôt, de façon opportuniste lorsqu'un épisode pluvieux est annoncé.
Dans ce contexte d’occurrence d’années sèches au moment de l’implantation du colza, Terres Inovia a contribué au développement par l’ACTA d’un outil de prévision des pluies AléaPluie accessible gratuitement et sans inscription préalable. Ce service fournit des informations sur les probabilités d'atteindre un certain seuil de cumul de précipitations sur les 2 semaines à venir sous forme de cartes, à l'échelle nationale.
Basé à la fois sur les résultats de cet outil, l’humidité et la structure de sol, Terres Inovia élabore des recommandations pour le déclenchement des semis du colza.
Pour le colza, un stress hydrique marqué, entre le début de la floraison et le stade G4 (dix premières siliques bosselées) + 10 jours, peut également pénaliser la formation et le remplissage des grains et affecter la production (jusqu'à -8 q/ha dans les essais Terres Inovia). Les leviers à actionner pour limiter cet impact négatif sont la qualité d'enracinement, la précocité variétale voire l'irrigation.
Une autre conséquence de la hausse des températures est qu’elle favorise les insectes, en accroissant leur aire de vie avec une tendance à l'expansion des ravageurs du sud vers le nord. Les périodes d'activité, en lien avec les exigences thermiques des espèces, sont plus précoces et plus longues. L'accroissement des températures moyennes peut également accroître la fertilité de certaines espèces.
Pour le colza, l'expansion des larves de grosse altise sur le territoire national illustre bien ce phénomène. Les automnes et hivers doux sont favorables à des périodes d'activité plus longues, ce qui se traduit par des pontes plus nombreuses et échelonnées (d'octobre à mars selon les régions). Les stades larvaires se succèdent plus rapidement, ce qui accroît la nuisibilité des attaques. Pour y remédier, Terres Inovia développe le concept et les leviers pour obtenir un colza robuste moins sensible aux dégâts de ravageurs.
Le pois de printemps, encore majoritairement cultivé, subit de façon récurrente des stress hydriques en fin de cycle mais aussi de plus en plus souvent avant le début de la floraison, ce qui impacte l’installation du couvert, la mise en place des nodosités et la nutrition azotée de la plante. Un déficit hydrique au cours de la floraison réduit généralement le nombre de graines par plante. Un stress hydrique très intense et plus tardif, lors du remplissage des graines, peut avoir une incidence sur le poids de mille grains. Par ailleurs, un stress thermique (températures maximales > 25°C) est souvent concomitant à un stress hydrique pendant la floraison. Or, ce dernier peut entraîner des avortements de graines dans les gousses. Ces stress de fin de cycle expliquent en grande partie les rendements faibles observés ces dernières années. Une date de semis précoce tend à limiter ces stress. Il faut donc semer tôt le pois au printemps, dès que le sol est suffisamment ressuyé. Le choix d’un type hiver permet également d'esquiver en partie le risque de stress au printemps.
Terres Inovia a mis en place depuis 3 ans des essais dates de semis en pois d’hiver et de printemps pour essayer de trouver la date de semis optimale permettant d’éviter les différents stress. Les premiers résultats indiquent que pour le pois de printemps, un semis trop précoce peut être exposé au gel. Il faut donc trouver un compromis pour éviter ce stress de début de cycle. Les pois d'hiver rencontrent plus souvent des gels tardifs au printemps, ce qui augmente le risque de bactériose. En effet, les lésions occasionnées par le gel constituent des portes d'entrée pour les bactéries dans la plante. Le retour de conditions douces et humides favorise ensuite le développement de la maladie. Pour ce type de pois, un meilleur calage de la date de semis et le choix d’une variété assez résistante au froid peut permettre d’échapper en partie à la maladie.
Le tournesol a quant à lui la capacité de s'adapter en conditions sèches. Il diminue sa consommation d'eau et, sa photosynthèse diminuant moins que sa transpiration, son efficience de l'utilisation de l'eau s'améliore. Les assimilats sont alors davantage mobilisés vers le capitule, ce qui améliore l'indice de récolte. Cependant, pour que ces mécanismes soient pleinement efficients, il est nécessaire que cette adaptation à la sécheresse intervienne au stade bouton floral, avant la période de sensibilité maximale au stress hydrique. Ainsi l'adaptation au stress hydrique du tournesol est en grande partie conditionnée par les précipitations au printemps. En effet, si l'eau est abondante au printemps, au cours de la phase végétative, le tournesol a tendance à gaspiller la ressource en eau. Plusieurs actions peuvent être mises en œuvre pour esquiver le risque de stress hydrique estival et/ou aider le tournesol à réaliser son parcours de croissance idéal, c’est-à-dire avoir une croissance végétative modérée et faire durer la vie des feuilles : semer tôt, éviter les surdensités et les sur-fertilisations, piloter l’irrigation pour garantir un parcours idéal de croissance.
L'impact du changement climatique sur les maladies est difficile à anticiper, notamment pour les agents pathogènes nécessitant de l’eau libre ou des humidités relatives élevées car les projections climatiques décrivent mal les précipitations, l'humidité relative ou l'humidité des sols. Pour le tournesol, les attaques de mildiou ou de sclérotinia sur capitules, qui exigent la présence d'eau libre, pourraient être limitées par le manque de pluies. A contrario, les températures élevées et la sécheresse peuvent favoriser certaines maladies comme le dessèchement précoce dû au phoma, accéléré par le stress hydrique pendant l'été, après la floraison. De même, Macrophomina phaseolina, champignon vasculaire responsable de la pourriture grise appréciant les températures élevées en fin de cycle (28-30 °C), pourrait apparaître plus fréquemment.
Pour les trois cultures, l'amélioration variétale est une des voies sur laquelle repose beaucoup d'espoirs pour rechercher des adaptations pour limiter les impacts négatifs du changement climatique.
La sélection poursuit en particulier ses efforts vers la création de variétés à bon comportement vis-à-vis des bioagresseurs. Des solutions sont déjà disponibles sur le marché telles que des variétés résistantes ou tolérantes (parfois partiellement) vis-à-vis du mildiou et de la verticilliose sur tournesol, ou de l'Aphanomyces en pois.
Le développement du phénotypage, notamment sur les cultures de printemps comme le tournesol ou le pois, permet de caractériser les variétés selon leur réponse au stress hydrique. Un des objectifs à moyen terme sera d'optimiser le choix variétal selon le profil de comportement des variétés face au stress hydrique. Dans les milieux contraints en eau, les variétés de type "conservatif” seront préconisées. Alors que dans les sols profonds et/ ou ayant accès à une ressource en eau non limitante, des variétés de type “productif” seront favorisées. Des travaux sont également en cours pour développer des variétés plus efficientes en azote, c'est-à-dire moins sujettes à perdre du rendement alors que l'alimentation azotée est sous-optimale, par exemple en l'absence de pluie efficace après un apport. Pour les légumineuses, des projets cherchent encore à comprendre comment la sécheresse a un impact sur la nodulation et la fixation symbiotique de l'azote.
A l’échelle des systèmes de culture
Les ajustements des itinéraires ne suffisent pas toujours. Et vu l’ampleur des changements, c’est l’ensemble de la gestion et même de la conception du système qui est à repenser. La mobilisation des leviers à l’échelle du système de culture est un point clé pour augmenter la robustesse du système de culture.
Pour s’adapter au changement climatique, différentes stratégies sont à combiner pour réduire l'exposition au stress climatique, réduire la sensibilité à l’aléa mais également augmenter ses capacités d’adaptation et profiter des opportunités (schéma).
Ainsi, alors que la gestion des itinéraires techniques de chaque culture peut permettre d’esquiver les principaux risques climatiques, de sécuriser les levées, ou d’atténuer les impacts grâce à ma mise en œuvre de leviers de robustesse à l’échelle des cultures robustes la réflexion à l’échelle du système de culture peut permettre de :
- Répartir les risques d’exposition dans le temps et dans l’espace grâce à des assolements/rotations diversifiés ,
- Atténuer les impacts grâce à des stratégies permettant de favoriser la robustesse des cultures, grâce notamment à l’amélioration de la fertilité des sols et de la qualité d’implantation des cultures, et de réguler des bioagresseurs grâce notamment à la diversification des cultures et à la contribution de la faune auxiliaire,
Les leviers relèvent de plusieurs composantes :
- améliorer les propriétés du sol (pratiques directement liées au système de culture)
- assurer une couverture régulière du sol (conception du système de culture)
- améliorer la répartition des ressources en eau et de l’interception lumineuse des cultures (synergies et complémentarités à privilégier entre composantes du système de culture)
- mettre en place des infrastructures agroécologiques (en dehors de l’atelier grandes cultures : arbres, talus, etc.)
- adapter l’assolement en choisissant des espèces adaptées aux risques climatiques locaux (conception du système de culture
Actuellement Terres Inovia explore plusieurs pistes:
- L’implantation des cultures comme la clé pour la robustesse des oléagineux et des légumineuses : Oui mais comment s’y prendre ?
- La fertilité des sols, pour assurer la robustesse et la résilience des cultures indépendamment du contexte climatique et de ses aléas. Terres Inovia étudie notamment les manières d’évaluer et de piloter la fertilité des sols, et les pratiques permettant de l’améliorer (couvert d’interculture et couverts associés au colza ou travail du sol par exemple)
- La diversification des cultures dans les systèmes pour apporter davantage de diversité fonctionnelle : il est souvent mentionné que la diversification des cultures augmente la résilience des systèmes vis-à-vis du changement climatique grâce à des processus de complémentarités fonctionnelles et de répartition des risques dans le temps et l’espace (Dardonville et al. 2019). Cependant les preuves empiriques sont rares (Gil et al. 2017, Bellouin et al. 2019, Dardonville et al. 2019) et les bénéfices de la diversification sont très dépendants du contexte (Rosa-Schleich et al. 2019). La diversification de son système de culture doit donc être pensée au regard du contexte local, comme cela est exploré dans les expérimentations système de culture des plateformes Syppre (lien site Syppre). Pour atteindre une robustesse globale et une multi-performance du système, ces expérimentations montrent qu’il est nécessaire de trouver le bon équilibre entre les cultures historiques, et des cultures de diversification adaptées au contexte climatique, et tolérantes aux risques et aux aléas. Par exemple, dans l’essai du Berry, la diversification passe par l’introduction de lentille, tournesol et millet, qui se montrent bien adaptées actuellement et qui pourraient l’être également dans un futur proche car ces cultures sont peu exigentes en eau. De plus, les associations de culture constituent un mode de production apportant des pistes à creuser aussi sous l’angle d’une meilleure résilience face aux aléas climatiques (apporter un microclimat favorable au sein du peuplement des partenaires, en valorisant leurs complémentarités fonctionnelles et synergies). Des études en milieu contraints pour les ressources en eau et en azote s’avèrent cependant nécessaires pour définir les meilleures combinaisons à rechercher.
Système innovant : objectif de robustesse vis-à-vis des bioagresseurs et des aléas climatiques
- Diversification de la rotation
- Cultures de diversification adaptées au contexte local et aux aléas climatiques : tournesol, lentille, millet
- Maintien d'une certaine part de cultures historiques (colza, blé, orge)
- Introduction de légumineuses en culture et couvert
- Leviers pour améliorer la fertilité des sols :
- Couverts d'interculture
- Couvert associé au colza
- Travail du sol adapté à l'état structural
- Etc.
Compréhension des éléments clés du changement climatique
Le réchauffement climatique est devenu une réalité car la température moyenne à la surface de la planète a augmenté de plus de 1.1°C par rapport au début du XXème siècle, la période 1901-1930 étant prise pour référence.
Cette augmentation est supérieure sur les terres (par exemple 2°C d’augmentation en moyenne sur la France) qu’au-dessus des océans. Sur les 30 dernières années, le réchauffement s’est accéléré avec un rythme de + 0.3°C / décennie en moyenne annuelle, comme on peut le voir sur la figure 1 qui rassemble l’ensemble des postes de mesures situés en France métropolitaine.
Figure 1 Evolution des températures annuelles (en moyenne sur la France métropolitaine) par rapport à la normale la plus récente 1991-2020. Source : Météo France
Ce réchauffement s’accompagne d’évènements climatiques impactant fortement les cultures oléo-protéagineuses. On peut citer par exemple les épisodes secs de fin d’été devenus plus fréquents depuis 2016 (figure 2). Ces épisodes sont préjudiciables pour l’implantation du colza et les phases de remplissage des cultures d’été comme le tournesol et le soja. Sur les 5 dernières années, 4 années présentent des manques de pluies sévères sur la période du 15 août au 15 septembre comme on peut le voir sur la figure 2.
Figure 2 Cumul des pluies du 15 août au 15 septembre (en mm) de 2018 à 2022 en comparaison avec la moyenne décennale. Source : Météo France
Ces dernières années, les occurrences de débuts de printemps secs ont également augmenté. La période du 15 mars au 15 avril est importante pour l’installation du couvert des protéagineux de printemps, et la mise en place des nodosités, nécessaires à la fixation de l’azote. Or, cette période a été particulièrement sèche en France 3 années consécutives (2019, 2020 et 2021) (figure 3). Ces dernières années, il a également été observé, une augmentation des épisodes de températures élevées dès la fin mai, qui surviennent pendant la période de floraison des protéagineux de printemps, ce qui limite fortement les rendements.
Figure 3 Cumul des pluies du 15 mars au 15 avril (en mm) de 2018 à 2022 en comparaison avec la moyenne décennale. Source: Météo France
Et dans le futur ?
Les évolutions climatiques observées s’inscrivent dans un changement qui va durer. Pour connaître les évolutions climatiques futures, la communauté scientifique a développé, depuis plus de trente ans, des modèles mécanistes de circulation générale de l’atmosphère et de l’océan (appelé modèles climatiques). Les données d’entrée de ces modèles sont les scénarios d’évolution de la concentration en gaz à effet de serre à l’échelle globale établies dans le cadre du GIEC. Ces modèles sont basés sur les équations de physique de l’atmosphère. Pour les calculs, l’atmosphère est découpée en « cubes » . La taille de ces « cubes » est comprise entre 50 et 200 kms (suivant le modèle) et de quelques kilomètres en épaisseur (figure 4). Dans la communauté scientifique internationale, il existe une vingtaine de modèles de climat. Parmi eux, il y a deux modèles français qui portent le nom des laboratoires qui les ont développés. Le CNRM (Centre National de Recherches Météorologiques) est le centre de recherche de Météo France et l’IPSL (Institut Pierre Simon Laplace) est une fédération de recherche qui regroupe les expertises de 8 laboratoires en sciences du climat.
Figure 4 - Découpage en maille de l’atmosphère dans un modèle de climat. Source éduction Météo France
La résolution spatiale des modèles ne peut être réduite pour des raisons de temps de calcul. Pour disposer de résultats à une échelle spatiale plus fine, la communauté scientifique a développé des modèles régionaux de climat qui sont utilisés couplés avec les modèles globaux de climat. Les modèles régionaux de climat sont également des modèles mécanistes, avec un domaine spatial limité (par exemple l'Europe de l'Ouest) et une échelle spatiale plus fine (une dizaine de kilomètres environ).
Pour en savoir plus : site Interstices.info
Ces modèles sont continuellement améliorés par les scientifiques. A chaque nouveau rapport du GIEC, l’ensemble de la communauté scientifique se mobilise en amont pour réaliser de nouvelles simulations. Comme chaque modèle a ses points forts et des points faibles, il est important de considérer les résultats d’un ensemble de modèles pour dégager les tendances communes et les signaux les plus robustes.
Les ensembles de simulations réalisés pour les deux derniers rapports du GIEC sont disponibles gratuitement. Le premier appelé CMIP5 (Climate Coupled model intercomparison project) a été réalisé pour le 5ème rapport du GIEC. Ces modèles ont ensuite été couplés avec des modèles régionaux de climat. Parmi tous ces modèles, les simulations de 12 modèles sont disponibles sur le portail DRIAS financé par le Ministère de la Transition Ecologique. En complément des données de simulations, un grand nombre de cartes d’évolution des principales variables climatiques sont présentées.
Le second, plus récent, appelé CMIP6 a été réalisé en 2021. Les résultats des simulations sont disponibles à l’échelle globale sur le site ISIMIP. Le couplage avec les modèles régionaux est en cours et les simulations à la résolution plus fine seront disponibles au premier semestre 2024.
Pour les deux ensembles, les données disponibles sont la pluie, la température, l’évapotranspiration et le rayonnement au pas de temps journalier pour chaque modèle. En attendant les nouvelles simulations, il est préconisé d’utiliser de manière combinée les deux jeux de données (CMIP5 et CMIP6). En effet, si les simulations de l’ensemble CMIP5 sont un peu plus anciennes, elles sont disponibles à une résolution plus fine que les simulations de l’ensemble CMIP6.
A partir de ces données, les climatologues étudient les tendances climatiques qui sont présentées dans les rapports du GIEC. Si la poursuite du réchauffement planétaire ne fait plus de doute, l’ampleur de ce réchauffement apparait plus marquée dans les études plus récentes. En particulier, les chercheurs de Météo France (Ribes et al., 2022) montrent que le réchauffement de la France pourrait être de 3.8 °C à l’horizon 2100 par rapport à la période de référence 1901-1930 en se basant sur le scénario médian SSP 4.5 (figure 5). L’originalité de cette étude est d’avoir sélectionné les simulations CMIP6 les plus en accord avec les données de températures observées dans le modèle de climat. La prise en compte des données réelles réduit l’incertitude dans les simulations, l’enveloppe des courbes rouge foncé est plus réduite que celle formée par les courbes rouge clair. Le réchauffement semble plus fort de 0.5 °C (+3.3°C sans les observations et +3.8°C en prenant en compte les observations).
Figure 5 - Evolution des températures moyennes à l’échelle nationale (en anomalie par rapport à la période 1901-1930). Les points noirs représentent les données réelles © Aurélien Ribes et al. 2022, « Earth Syst. Dynam. », 13, 1397-1415 (CC BY-4.0)
Pour mieux préciser les impacts du changement climatique à venir sur les cultures oléo-protéagineuses, des indicateurs agro-climatiques (variables climatiques bornées par des stades de développement et comparées à des seuils) ont été choisis pour représenter les principaux stress abiotiques auxquels les cultures oléo-protéagineuses sont sensibles .à certaines périodes-clés de leur cycle. La première étape va consister à voir comment l’augmentation des températures va agir sur les stades de développement. Ces derniers vont en effet avoir tendance à être plus précoces. En parallèle, les périodes de pluies et de sécheresse mais aussi de températures basses ou élevées vont également évoluer. Il est donc possible que des situations actuelles avec des stress déjà présents ces dernières années s’aggravent ou au contraire s’améliorent. Le changement climatique pourra donc apparaître comme une menace pour certaines cultures ou au contraire comme une opportunité pour d’autres.
Des leviers pourront ensuite être envisagés pour esquiver ces risques comme par exemple le décalage des dates de semis, afin de recaler le cycle de certaines cultures dans un contexte climatique plus favorable. Pour étudier les principaux changements attendus dans un futur proche (jusqu’en 2050), les équipes de Terres Inovia vont étudier les variations de ces indicateurs pour les cultures dont l’institut a la charge. Pour cette étude, il est donc nécessaire de savoir modéliser les stades de développement de toutes les cultures mais aussi de bien connaître les stress climatiques qui influent sur l’élaboration du rendement de chacune d’elle, en identifiant les périodes sensibles et les seuils à prendre en compte.
Ces résultats montrent à la fois :
- La nécessité de s’adapter pour réduire l’impact du changement climatique sur les grandes cultures à court et moyen terme ;
- La nécessité de réduire les émissions de gaz à effet de serre dès maintenant pour contribuer à réduire la sévérité du changement climatique à moyen et long terme.
S'inscrire avec Facebook
S'inscrire avec Google