

Dry fractionation of rapesed meal for the production of protein and phenolic enriched fractions

Oscar Laguna¹, Abdelatiff Barakat², Hadil Alhamada-Drei², Erwann Durand³, Bruno Barea³, Pierre Villeneuve³, Fréderic Fine¹, Sylvie Dauguet¹, Anne-Gaëlle Sicaire¹, Jérôme Lecomte³

¹Terres Inovia, Pessac, France, ²INRA, UMR IATE, Montpellier, France, ³CIRAD, UMR IATE, Montpellier, France

Objective

Separate the phenolic fraction from the proteins of the rapeseed meal (RSM) by using dry fractionation processes: ultrafine milling combined with electrostatic sorting or turbo-separation.

Materials & methods

Electrostatic sorting

NO SOLVENT, NO

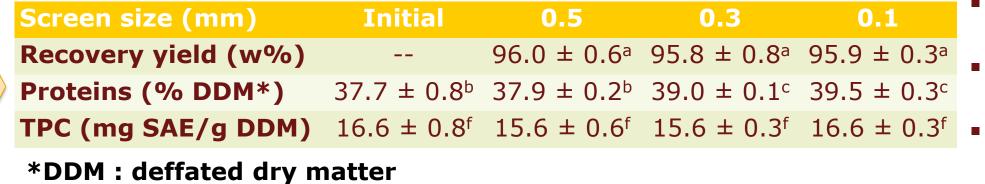
or

EXTERNAL HEATING

Turbo-separation

meal

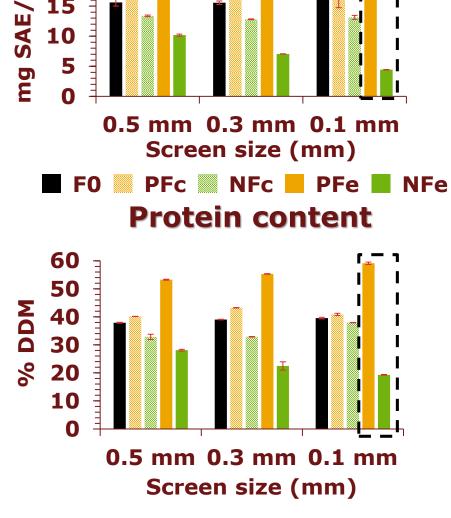
- Rapeseed
- **Ultrafine milling**
 - **Share and impact milling** Three different screen size used
- Fractions recovered on the electrodes: positive (PFe) & negative (NFe) • Fractions collected on the jars: positive (PFc) & negative (NFc) Separation based on particle charge
 - Separation based on particle size and density Three speeds tested: 3000-7000 rpm

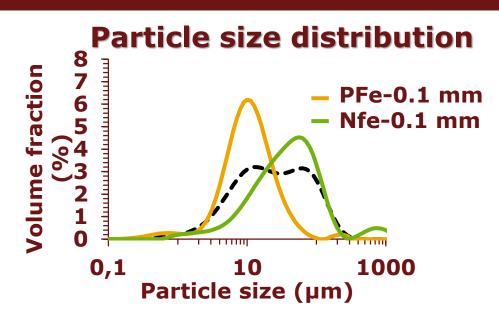

Particle size distribution, total phenolic content (TPC) protein content and recovery yield determined

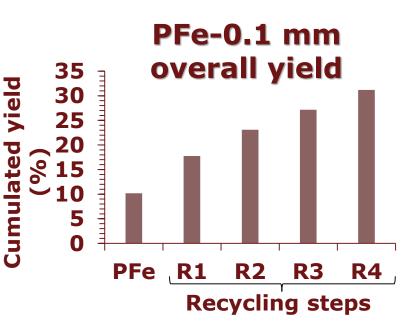
Results & discussions

Particles charged by tribo-electricity

Ultrafine milling


Particle size distribution - 0.1 mm - 0.3 mm - 0.5 mm 100 1000 Particle size (μm)




- Decrease of the screen size: appearance of two populations.
- Hypothesis: detachment of the small globular protein bodies from the cellular matrix.
- Protein and TPC content not affected by the milling process.

Electrostatic sorting

TPC content

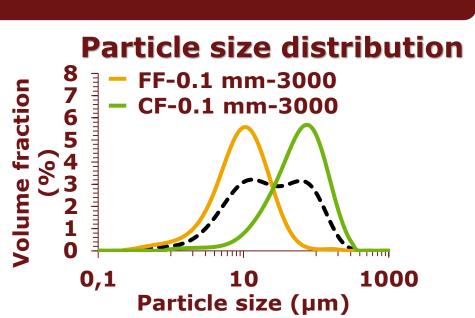
Finest and more easily charged particles recovered on the electrodes.

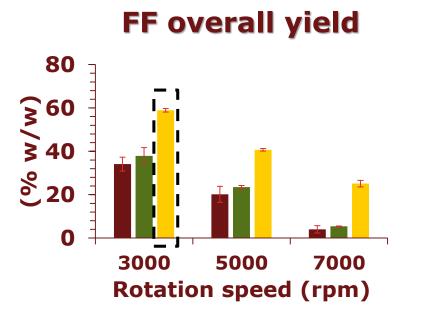
 $25.8 \pm 0.1 \text{ mg SAE/g DDM, proteins} = 59.1 \pm 0.4 \% DDM).$

Highest protein/TPC content obtained in the PFe of the finest RSM (TPC =

After re-passing four times the corresponding collected fractions, the PFe

PFe fractions enriched with proteins/phenolics.


overall yield increased ($\approx 31\%$).


- Σ 25 20 20 FG mg 3000 5000 7000 3000 5000 7000 Rotation speed (rpm) ■ 0.5 mm ■ 0.3 mm ■ 0.1 mm

Turbo-separation

TPC content

Protein content FG 3000 5000 7000 3000 5000 7000 Rotation speed (rpm)

- FF fractions enriched with proteins/phenolics.
- No clear influence of the rotation speed and the recovery of protein/phenolics observed.
- Best overall recovery yields of the FF fractions obtained with the finest RSM, the highest (58.9 \pm 1.4 %) obtained at 3000 rpm: TPC = 20.6 \pm 0.2 mg SAE/g DMM, proteins = $45.9 \pm 0.1 \%$ DDM).

Proteins are somehow linked to phenolics and they can't be separated by dry fractionation processes. However, these processes can be seen as a mild pre-purification step of protein and phenolics. Also, the enriched protein/phenolic fractions could be used as emulsifiers displaying strong antioxidant activities.

Conclusions