

Evidence of a Speed Dependent Critical Pressure for the Mechanical Extraction for High-oil and Low-fiber Matrices

ROUSSEAU Florian^{1,2}

SAVOIRE Raphaëlle¹

GOUYO Têko²

CARRÉ Patrick²

INP Ensmac

¹Université de Bordeaux, Pessac, France ²Terres Inovia, Pessac, France

Materials and methods

Results and discussion

Conclusions and perspectives

- It's very difficult to extract oil from a low fibers matrices on a continuous press
- Many phenomenons appears decreasing the oil extraction efficiency
 - Feets
 - Backflow¹
 - High oil content in the pressure cake
- To increase the oil yield and minimise the losses, it's important to caracterise and understand this phenomenons, we will focus on the **extrusion**

Materials and methods

Results and discussion

Conclusions and perspectives

• In 2001, Ra β saw this phenomenon and linked it with the plasticity or elasticity of the matrice²

• Also seen by several observers until recently by DEMIREL *et al*^{.3,} which showed this phenomenon and called it « Serration effect »

² RAβ, M., Über die rheologie fester biomatrizen unter kompression fall von geschältem raps, Essen Universität, 2001
³ DEMIREL, C. et al., Numerical estimation of deformation energy of selected bulk oilseeds in compression loading, IOP Conf. Series : Materials Science and Engineering, 2017

- Look after the phenomenon of extrusion and watch what are the factors which influence it
- Make hypothesis on the behaviour of the matrice during the compression
- Etablish a predictive model that permit to predict the extrusion in a continuous press

Materials and methods

Results and discussion

Conclusions and perspectives

Materials and methods

Results and discussion

Conclusions and perspectives

• Matrice : Dehulled Sunflower

- Moisture : 4.7%/6%
- Oil content : 51.6%

Dehulled sunflower use for the test

- 15 g of dehulled sunflower
- Range of speed from 0.1 mm/min to 20 mm/min

Example of curves obtained with unidirectionnal compression; (a) Curve without extrusion; (b) Curve with extrusion

Materials and methods

Results and discussion

Conclusions and perspectives

The critical pressure is speed dependent

- No extrusion with a speed under 1 mm/min
- The water content influence the pressure value of the extrusion

• Predicting the critical pressure, 2 models were compared (1) (2)

Materials and methods

Results and discussion

Conclusions and perspectives

- May due to the liquide pressure reaching the solid pressure and force the solide to pass threw the holes⁴
- When the fluide can escape, the liquid pressure is lower than solid pressure. With a high speed, the liquid couldnt escape and the liquid pressure increase too quick

⁴ SHIRATO, M., et al., Slurry Deliquoring by expression, Dechema Monogram, **1974**

Conclusions and perspectives

- Find a physical sens of the constant A, B and see if it's an available prediction in the continuous press
- See if the value that was found are corresponding to a continuous extraction press
- We have an instrumentate press with pressure captors all along the process to see if the phenomenon appears at the pressure found

Materials and methods

Results and discussion

Conclusions and perspectives

MANY THANKS TO

Pr. SAVOIRE Raphaëlle The phd Students CBMN Lab staff CARRÉ Patrick GOUTO Têko LOISON Jean-Philippe DUPLAND Jean-Yves ITERG & Terres Inovia staff

THANKS FOR YOUR ATTENTION

Materials and methods

Example of compression curve under regular speed³

Serration effect zone

Classic compression curve shape

- This is notable by the classic exponential shape breakup of the compression curve
- The serration effect is dependent of the compressive forces⁴ inherent of the vessel diameter⁵
- Dependant of mutliple parameters as matrice⁶, moisture⁴

⁴ KABUTEY, A., *et al., Behaviour of different moisture contents of Jatropha curcas L. seeds under compression loading,* Resarch in Agricultural Engineering, **2011** ⁵ KABUTEY, A., *et al., Deformation energy of Jatropha curcas L. seeds under compression loading,* Resarch in Agricultural Engineering, **2014** ⁶ DIVIŠOVÁ, M., *et al., Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading,* Scientia Agriculturae Bohemica, **2014**