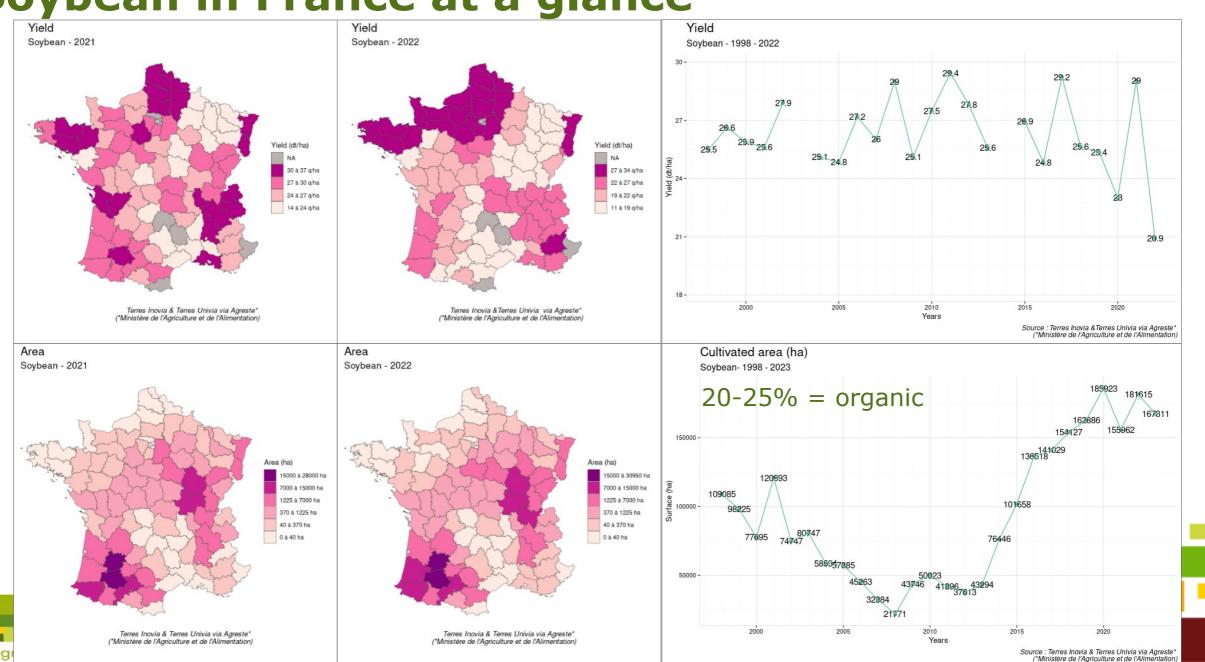


Knowledge exchange for European soybean agronomists

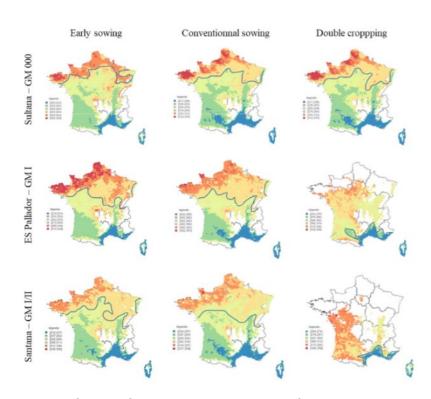
David Gouache, Deputy Director, R&D Director, Terres Inovia 21/06/2023

Terres Inovia – applied research & technology transfer of the French oilseeds & grain legumes sector

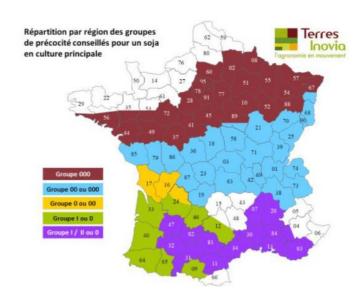
- Board majority = representatives of growers & industry of the oilseeds & grain legumes sector :
- 16 M€/year budget: 60-65% levy on each ton produced
 -+5 M€/year 2021 & 2022: French National Plant Protein Strategy
- Collective R&D and transfer spanning from inputs to production to 1st transformation of grains


• Terres Inovia = 2015 merger between CETIOM (oilseeds) and UNIP

Soybean in France at a glance

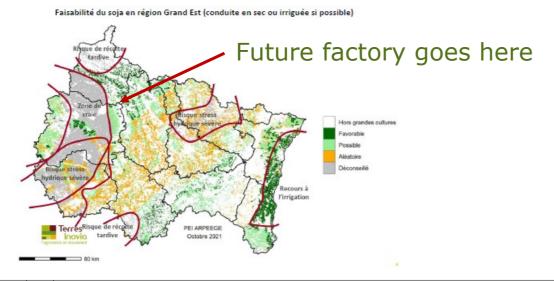

Soybean perspectives & objectives in France

- French National Plant Protéin Strategy = doubling of grain legumes by 2030 → reaching 250-300 kha soybean
- Where is this biologically feasible ?
- What are the technical and economical conditions?



Phenological feasability & recommendations

- Phenology: SPA simulations (Schoving 2020)
- → Feasability limit (harvest date) for sowing date X cultivar X climat scenario



 See following link for details on variety recommendations:

https://www.myvar.fr/upload/media/document/0001/02/72aa332853f50efe0e44202059e1fd9d18dbabea.pdf

Agronomic & economic feasability

Risque de récolte tardive																				
modélisation date de récolte	OUI	NON																		
>12/10																				
Sol de craie		OUI	NON																	
PRA "zone de craie"	.	001	NON																	
Réserve utile du sol																				
Fréquence des sols profonds			sols profonds majoritaires >=50% sols profonds minoritaires <=50%																	
(RU>120mm)																				
Risque de stress hydrique																				
modélisation ETR/ETM pour																				
RU 120 mm; moyenne			faible			moyen			fort		faible		moyen		fort					
pluriannuelle <0.6 fort, 0.6-																				
0.7 moyen, >0.7 faible	.																			
Irrigation			non irrigué	irrigué avec restriction	irrigué sans restriction	non irrigué	irrigué avec restriction	irrigué sans restriction	non irrigué	irrigué avec restriction	irrigué sans restriction	non irrigué	irrigué avec restriction	irrigué sans restriction	non irrigué	irrigué avec restriction	irrigué sans restriction	non irrigué	irrigué avec restriction	irrigué sans restriction
FAISABILILITE DU SOJA	DECONSEILLE	DECONSEILLE	FAVORABLE	FAVORABLE	FAVORABLE	POSSIBLE	FAVORABLE	FAVORABLE	ALEATOIRE	POSSIBLE	FAVORABLE	POSSIBLE	POSSIBLE	FAVORABLE	ALEATOIRE	POSSIBLE	FAVORABLE	DECONSEILLE		FAVORABLE

 Overall agronomic feasability with expert rules and GIS (Baillet 2022) → New soybean crush factory

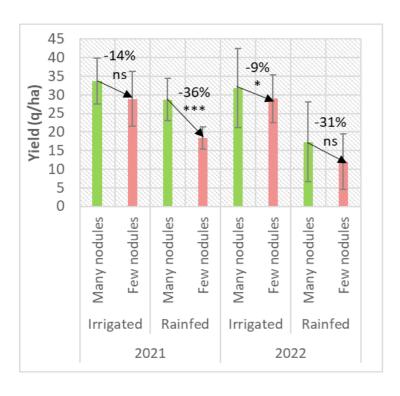
Economical feasability of soy expansion (Charon, 2022)

- Center-West of France: technically feasible, large arable growing area, close to major livestock areas → yet only 5 kha (2021)
- 4 representative farm types (with & without irrigation) for the region → 2-3 hypotheses for integration of soy in cropping systems → analysis and comparison to baselin with Systerre® multicriteria evaluation tool
- At the farm level, with current yield and price levels, gross margin loss for growers of ~ 60 €/ha (13-117), compared to ~30€/ha with pre-2020 prices = 4 % gross margin and 7% net margin (without CAP aids) loss
- At the crop level, soy gross margin lacks ~ 900 €/ha compared to main arable crops → 1 t/ha yield gain (!!) or 0.5 t/ha yield gain + 100€/t price gain

(see poster by Gouache et al., this conference)

Avenues to improve yields

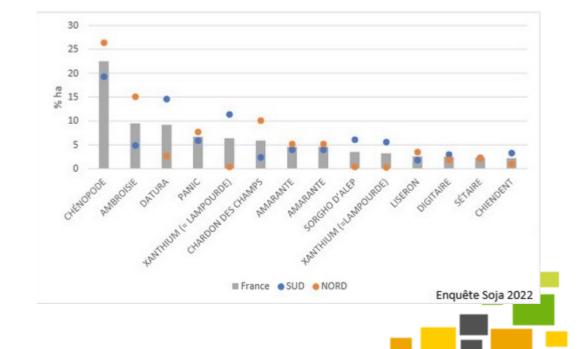
- Agronomic diagnosis of 322 fields / 2 contrasting years (21, 22)
- Key limiting factors: weed management, nodulation, water availability → all linked to crop establishment and moisture/water management


Limiting factors 2021-2022	Number of fields	Thresholds for calculation	Average yield difference 2021-2022	Impact level 2021- 2022
Presence of weeds at flowering	315	«very weedy» vs «no weed»	-49%	5
Quantity of nodules at flowering	170	« Few » vs « Many »	-35%	4
Quantity of incoming water flow-mat (mm)	167	<100 vs >280	-34%	4
Height of first pod (cm)	297	<10 vs >18	-33%	4
Presence of pests at early/late stage	304	Damage >20% vs 0	-31%	4
Uniformity of stand	315	« very het. » vs « very hom. »	-27%	3
Nitrogen Nutrition Index at flowering	49	>0.6 vs >0.95	-25%	3
Root depth at flowering	91	« <15cm » vs « >15 cm »	-15%	2
Stand density (early stage) (plants/m²)	97	<40 vs 40-65	-14%	2
Fresh biomass at flowering (g/m²)	202	<1400 vs >2500	-8%	1
Presence of deseases at flowering	312	Damage >20% vs 0	ns	1

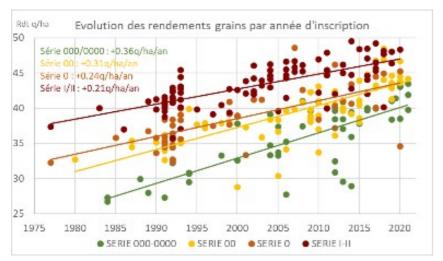
Avenues to improve yields – inoculation?

- In our grower surveys, ~80% consistently say they are satisfied with their level of nodulation → in contradiction with expert observations here
- 97% of areas with a "first soy" for 4 years are inoculated
- 91% of areas with frequent soy are inoculated: more secure than Terres Inovia recommendations

Plot history	Nodulation quality on previous soy	Years since previous soy	Soil type	DECISION	
First Soy				INOCULATE	INDISPENSABLE
Soy previously planted	Good	<4 years ago	Calcareous soil or sandy soil with low organic matter	INOCULATE	INDISPENSABLE
		C4 years ago	Others	DO NOT INOCULATE	USELESS
		>4 years ago		INOCULATE	IN CASE
	Poor			INOCULATE	NECESSARY


- Maintain high inoculum quality control: >10⁶ bacterium/grain
- Inoculum storage/application before sowing leads to losses in rhizobia populations ?
- Interaction with crop establishment conditions and drought

Avenues to improve yields – weed management


- 32% growers unsatisfied with their level of weed control in 2022, especially in southern France (36% in 2022 compared to 25% in 2019)
- Probable link to dry conditions having negatively affected proper crop density establishment (despite growers having increased their sowing densities in 2022)
- As previously for nodulation → importance of crop establishment, soil moisture management and water availability
- Dominant herbicide programs follow our recommendations :
 - Post-sowing/pre-emergence + post emergence
 - S-metolachlore + imizamox dominate
- ~10% mechanical weeding
- Probable attention needs to be paid to specific situations with difficult weeds, that require
 - Particular attention to herbicide timing
 - Specific combinations of active substances & alternative measures

Avenues to improve yields - variety choice

Phenology shift	Irrigated	N	Yield gain (t/ha)		
000 → 00	No	7	+0.26		
000 → 00	Yes	9	+0.13		
00 > 0	Both	7	-0.05		
0 → 1/11	Both	11	+0.4		

- Significant breeding progress: 0.2-0.36 t/ha / 10 years & 0.5 protein % / 10 years
- Opportunity to shift to later maturity groups to increase yields
- Breeding progress poorly exploited by growers: 64% area in South = ISIDOR (registered 2004), 30% area in North = ES MENTOR (registered 2009)
 - Linked to downstream uses: food uses
 - Linked, in South, to farm saved seed (50-80% depending on data sources)
- A major national public-private R&D project to improve soy:

Other notable aspects of cropping practices

- In diversified, long rotations: 87% with maximum 2 soy crops / 6 years
- Increase in cover crops preceding soy from 16% (2016à to 38% (2022)
- Sowing dates slightly earlier in North vs South (4 vs 7 May) with only 21% area sown in April in South vs 46% in North → opportunity for yield increases and drought avoidance?
- Tillage practices stabilized after a decade of deep tillage reduction (~40% ploughing)
- 53% area irrigated in 2022 & 2019 (69% in 2016, 54% in 2012)
- Increase of irrigation doses in 2022 linked to strong drought: + 10 mm on deep soils, +40 mm on shallow soils (baseline = 150 & 180 mm)

Examples of recommended crop management

Exemples de conduite du soja

Poitou-Charentes

Sol superficiel -Conduite irriquée

Rendement: 32 a/ha Variétés: groupes 0 à 00 Interliane: 18 à 40 cm Densité de semis : 500 000 graines Engrais P/K: 50 unités Herbicides: prélevée + post-levée Protection ravageurs et maladies antilimaces selon besoin Irrigation: 200 mm

Charges opérationnelles (1) : 872 €/ha Marge brute (2) : 600 €/ha

Sol profond - Conduite en sec (pluviale)

Rendement: 30 g/ha Variétés: groupes 0 à 00 Interligne: 18 à 40 cm Densité de semis : 550 000 graines Engrais P/K: 40 unités Herbicides : prélevée + post-levée Protection ravageurs et maladies antilimaces selon besoin

Irrigation: non

Charges opérationnelles (1) : 503 €/ha Marge brute (2) : 877 €/ha

Productivité et charges basées sur 100 % de semences certifiées et avec des variétés recentes et adaptées au territoire.

Inoculum: sur graines Labour: oui (1) 100 % de semences certifiées

(2) Avec un prix de vente indicatif de 460 €/t Valeur provisoire estimée sur la récolte 2021.

Source: experts Terres Inovia

Sud-Ouest, Rhône-Alpes Sud

Sol superficiel - Conduite irriquée

Rendement: 36 a/ha Variétés : groupes I à II Interliane: 35 à 60 cm Densité de semis : 400 000 graines

Engrais P/K: 50 unités Herbicides : prélevée + post-levée

Protection ravageurs et maladies : antilimaces selon besoin

Irrigation: 200 mm

Charges opérationnelles (1): 780 €/ha

Marge brute (2): 876 €/ha

Sol très profond - Conduite en sec

Rendement: 24 a/ha Variétés : groupes l

Interligne: 18 à 40 cm Densité de semis : 500 000 graines

Engrais P/K: 40 unités Herbicides: prélevée + post-levée

Protection ravageurs et maladies : non

Charges opérationnelles (1): 475 €/ha Marge brute (2): 629 €/ha

Lorraine, Champagne-Ardennes, Sud Picardie

Sol profond - Conduite en sec

Rendement: 25 g/ha Variétés : groupe 000 Interligne: 18 à 30 cm Densité de semis : 700 000 graines Engrais P/K: 50 unités Herbicides: prélevée + post-levée

Protection ravageurs et maladies : antilimaces selon besoin

Irrigation: non

Charges opérationnelles (1): 614 €/ha Marge brute (2) : 536 €/ha

Bourgogne, Rhône-Alpes-Nord, Alsace, Franche-Comté, Auverance

Sol profond - Conduite en sec

Rendement: 32 g/ha Variétés: groupes 00 Interligne: 18 à 40 cm Densité de semis : 600 000 graines Engrais P/K: 50 unités Herbicides: prélevée + post-levée Protection ravageurs et maladies

antilimaces ou anti-chenilles défoliatrices selon besoin

Irrigation: non

Charges opérationnelles (1): 558 €/ha

Marge brute (2) : 914 €/ha

Sol moyennement profond - Conduite irriquée

Rendement: 42 a/ha Variétés: groupes 00 Interliane: 18 à 40 cm Densité de semis : 700 000 graines

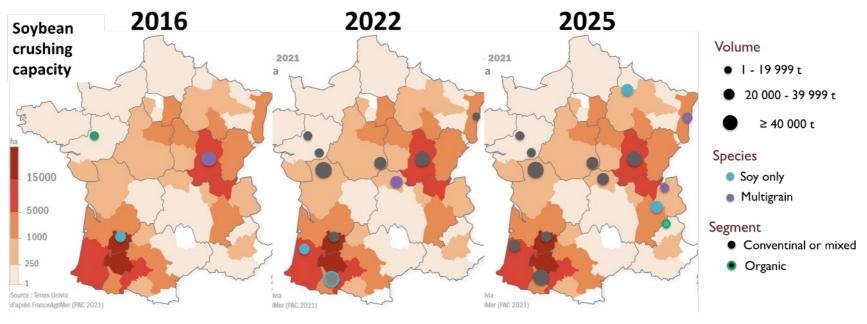
Engrais P/K: 50 unités Herbicides: prélevée + post-levée Protection ravageurs et maladies

antilimaces ou anti-chenilles défoliatrices selon besoin

Irrigation: 150 mm

Charges opérationnelles (1): 931 €/ha Marge brute (2): 1 001 €/ha

See following links for details:


Conventional:

https://www.terresi novia.fr/o/commerc e-media/products/4 54326/quide-soja/4 22454/Guide%20 de%20culture%20s oja%202022.pdf?d ownload=false&title =fichier.pdf

Organic :

Beyond the field, improving soy meals for feed

- New factories → need to support best agronomic practices
- New & existing factories: need to improve expeller soy meal qualities → diagnosis and expertise to improve cooking systems and reduce heterogeneity

(see poster by Gouache et al., this conference)

Conclusions

- Pursue yield gap diagnostics
- Address specific crop husbandry issues: establishment, weed management, nodulation
- Pursue breeding progress and ensure its transfer to the field
- Link to soy transformation industry to improve value

Acknowledgments

- TI colleagues: V Lecomte, D Wagner, C Schoving, H
 Tribouillois, H Dechatre, L Cipolla, C Barbet-Massin, C
 Motard, A Baillet, C Sausse, X Pinochet, A Verniau, M
 Charon, and more
- Breeders from GIE Soja
- Cap Protéines project funding and partners
- UMR AGIR (INRAE Toulouse) colleagues

