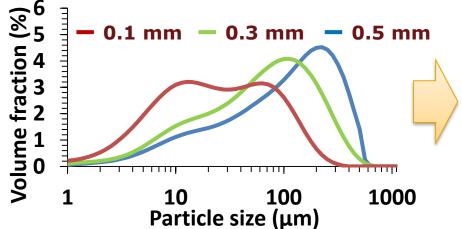

Dry fractionation of rapeseed meal for the production of protein and phenolic enriched fractions

Oscar Laguna¹, Abdelatiff Barakat², Hadil Alhamada-Drei², Erwann Durand³, Bruno Barea³, Pierre Villeneuve³, Fréderic Fine¹, Sylvie Dauguet¹, <u>Anne-Gaëlle Sicaire¹</u>, Jérôme Lecomte³

¹Terres Inovia, Pessac, France, ²INRA, UMR IATE, Montpellier, France, ³CIRAD, UMR IATE, Montpellier, France

Objective

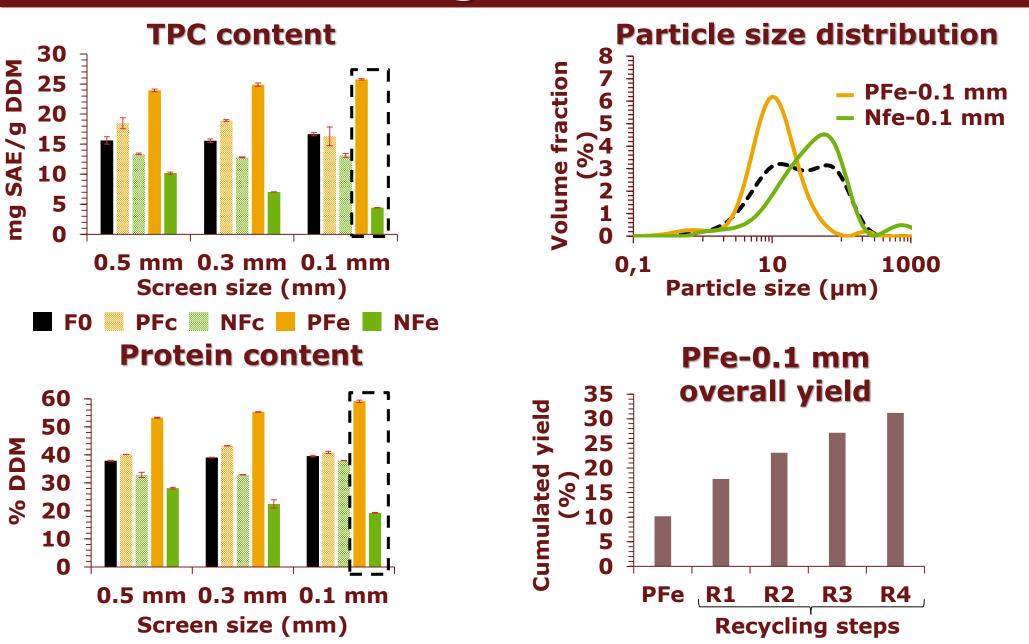
Separate the phenolic fraction from the proteins of the rapeseed meal (RSM) by using dry fractionation processes: ultrafine milling combined with electrostatic sorting or turbo-separation.



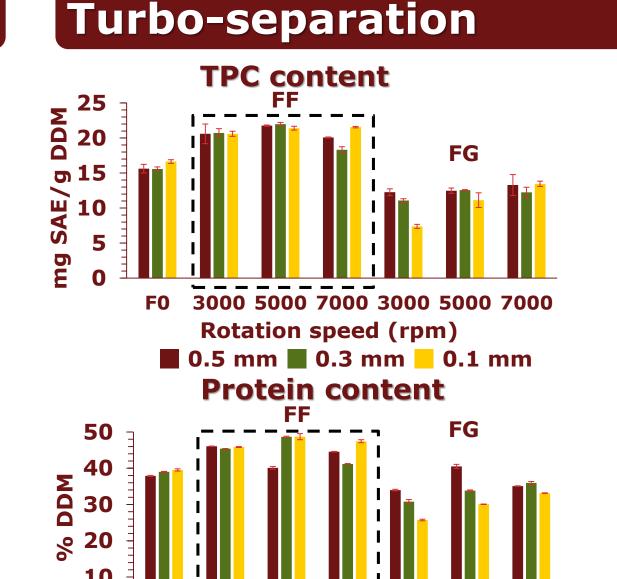
Particle size distribution, total phenolic content (TPC) protein content and recovery yield determined

Results & discussions

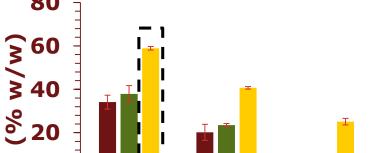
Ultrafine milling


Particle size distribution

n	Screen size (mm)	Initial	0.5	0.3	0.1	
	Recovery yield (w%)		96.0 ± 0.6^{a}	95.8 ± 0.8^{a}	95.9 ± 0.3^{a}	
	Proteins (% DDM*)	37.7 ± 0.8^{b}	37.9 ± 0.2^{b}	$39.0 \pm 0.1^{\circ}$	$39.5 \pm 0.3^{\circ}$	
	TPC (mg SAE/g DDM)	16.6 ± 0.8^{f}	15.6 ± 0.6^{f}	15.6 ± 0.3^{f}	16.6 ± 0.3^{f}	


***DDM : deffated dry matter**

Electrostatic sorting



Decrease of the screen size: appearance of two populations.

- Hypothesis: detachment of the small globular protein bodies from the cellular matrix.
- Protein and TPC content not affected by the milling process.

Particle size distribution FF-0.1 mm-3000 Volume fraction - CF-0.1 mm-3000 % 1000 0,1 10 Particle size (µm) FF overall yield 80

- Finest and more easily charged particles recovered on the electrodes.
- PFe fractions enriched with proteins/phenolics.
- Highest protein/TPC content obtained in the PFe of the finest RSM (TPC = $25.8 \pm 0.1 \text{ mg SAE/g DDM}, \text{ proteins} = 59.1 \pm 0.4 \% \text{ DDM}).$
- After re-passing four times the corresponding collected fractions, the PFe overall yield increased ($\approx 31\%$).

0	ļ .					
	3000	5000	7000			
	Rotation speed (rpm)					

- FF fractions enriched with proteins/phenolics.
- No clear influence of the rotation speed and the recovery of protein/phenolics observed.
- Best overall recovery yields of the FF fractions obtained with the finest RSM, the highest (58.9 ± 1.4 %) obtained at 3000 rpm: TPC = 20.6 ± 0.2 mg SAE/g DMM, proteins = $45.9 \pm 0.1 \%$ DDM).

Conclusions

Proteins are somehow linked to phenolics and they can't be separated by dry fractionation processes. However, these processes can be seen as a mild pre-purification step of protein and phenolics. Also, the enriched protein/phenolic fractions could be used as emulsifiers displaying strong antioxidant activities.

