Cadmium in sunflower seeds: different contents in hulls and kernels and consequences for food and feed industry

Vincent JAUVION¹, Christophe NGUYEN², Jean-Philippe LOISON³, Céline MOTARD¹, Sylvie DAUGUET¹

¹TERRES INOVIA, ²INRAE (UMR Ispa INRAE and Bordeaux Sciences Agro), ³ITERG v.jauvion@terresinovia.fr

Presentation outline

- 1. Context and objectives of the study
- 2. Materials and methods
- 3. Results and discussion

Cadmium

- A toxic metal
- Naturally present in soils
- Toxic to living organisms: carcinogenic, mutagenic and reprotoxic

Soil contamination

- Diffuse contamination in agricultural soils
- Mainly derived of soil pedogenesis
- Or coming from agricultural inputs (phosphoric fertilizer) or atmospheric fallouts

Contamination of food chain

- Cadmium absorption by plant root and transfer to the consumed parts of plants
- Consumers are exposed to cadmium through their diet
- An incresase in Cd in food (EAT1, EAT2) and in the impregnation of French population (Esteban and ANNS studies) between 2000 and 2009
- Sunflower strongly transfer Cd from soil to seeds
- Cd concentrated in meal after crushing (very little in oil) → issue for animal feed (or for innovative uses in human food)

What are the regulatory thresholds for sunflower?

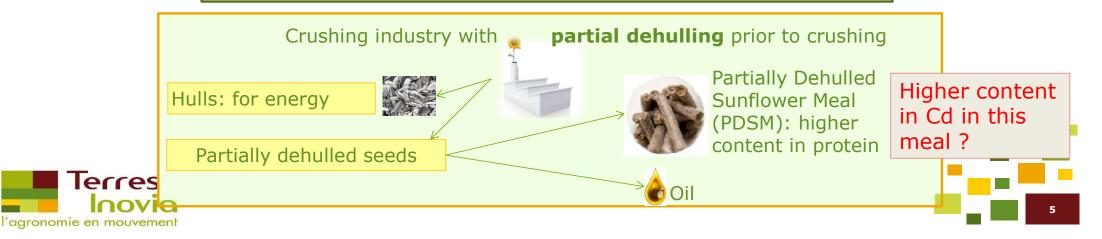
- **Food**: Commision regulation (EU) 2021/1323
 Sunflower seeds used for human.consumption. should have Cd content < **0,5 mg/kg**This threshold does not apply to oilseeds intended for crushing, provided that the meal is not used for human consumption.
- Feed: Directive 2002/32/EC on undesirable substances in animal feed
 Raw materials for <u>animal feed</u> (including sunflower seeds and meal) should have Cd content < 1 mg/kg

Cd contents found in the sunflower sector in France (PSO, 2015-2022):

- Sunflower seeds: 0.3-0.4 mg/kg (14% samples > 0.5 mg/kg and 0% > 1 mg/kg)
- Sunflower meals: 0.5-0.6 mg/kg (1.5% samples > 1 mg/kg)

Fate of Cadmium in crushing process with dehulling?

What we know: Cd is concentrated in the meal


Sunflower seeds composition: 2 main fractions

Kernels:
oil and protein

To-80%

To-80

Hulls are richer or lower than kernels in Cd?

Objectives of the study:

- to study the repartition of Cd between hulls and kernels
- to evaluate the consequences for the Cd content in meals
- to evaluate the genetic variability for Cd repartition between hulls and kernels as a perspective for breeding

2. Material and Methods

Sunflower seed sourcing

- Seeds collected in a field trial: 3 cultivars (ES Biba, Extrasol, Vellox)*3 replicates
- Cultivation: on a calcareous loam in Charente-Maritime County in France, this soil having a moderately high Cd content (1 mg Cd/kg), whereas the median Cd content of cultivated soils in France is 0.2 mg/kg.

Treatment on seeds

- Washing: Half of the samples was washed with distilled water → in order to check if Cd content in seeds was affected by dust deposited onto hulls during harvest.
- Dehulling: Samples were dehulled on a pilot dehulling equipment: two fractions were separated → kernels and hulls

Cadmium content determination

• The Cd contents in hulls and kernels were determined by atomic absorption I spectroscopy after digestion in a HNO₃-HCl mixture.

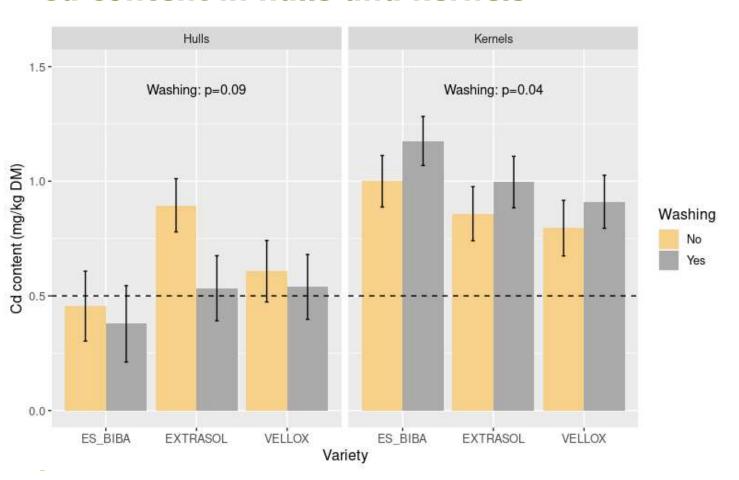
3. Results and discussion

Characteristics and Cd content of the whole seeds

Mean value (Standard errors) N=3		Varieties		
		ES Biba	Extrasol	Vellox
Thousand kernel weight (g DM)		56.1	58.7	54.5
Whole seed oil content (% DM)		54.1	53.1	57.5
Kernel/hull dry matter ratio		2.52 a	2.71 ab	2.88 b
Cd content (mg/kg DM at 9% H2O)	No washing	0.84 (0.11)	0.88 (0.13)	0.76 (0.11)
	With washing	0.88 (0.12)	0.83 (0.11)	0.70 (0.11)

Significative differences

No significative differences


No significative differences

- → No significant effect of the variety on Cd content of whole seed
- → No significant effect of washing on Cd content of whole seed
- → Cd content in seeds < feed regulatory limit but > food limit
 This contamination is not representative of the average Cd level in sunflower seeds cultivated in France (specific soil with high Cd content due to geological substratum)

3. Results and discussion

Cd content in hulls and kernels

- → Weak effect of seed washing on Cd content of hulls and kernels
- → Kernels are more concentrated in Cd than hulls
- → Cd ratio between kernels and hulls depends on variety:
 - o ES BIBA x 2.6
 - o Extrasol x 1.3
 - Vellox x 1.5

Hypothesis: link with size of kernel versus hull → affects dilution of Cd in kernel

3. Results and discussion

Cd content in edible sunflower products

Mean value	Varieties		
N=3	ES Biba	Extrasol	Vellox
Fraction of Cd in kernels (%)	87% a	78% b	82% b
Calculated Cd content of meals from whole seeds (without dehulling) (mg/kg DM)	1.74 a	1.65 b	1.55 b
Calculated Cd content of meals from dehulled seeds (67% hulls removed) (mg/kg DM)	2.43 a	2.05 b	2.17 b
Calculated Cd content of meals from kernels (mg/kg DM)	3.41 a	2.61 b	2.84 b

Significative differences

No significative differences

Significative differences

Significative differences

- → Cd fraction in edible kernel differed significantly: 78% (Extrasol) to 87% (ES Biba)
- → Dehulling (which increase protein content of meal) results in increased Cd content
- → Prospects of using kernel meals as source of proteins for humans are hampered by Cd

Conclusion / take-away messages

- Sunflower kernels are richer in Cd than hulls
- Kernel/hull ratio may affect dilution of Cd in kernel
- Genetic variability for capacity of transfer of Cd from hull to kernel may exist
- → This opens perspective of breeding sunflower genotypes that accumulates less Cd in kernel, to increase food/feed safety

More details in scientific article:

Nguyen, C., Loison, JP., Motard, C. *et al.* Cadmium partitioning between hulls and kernels in three sunflower varieties: consequences for food/feed chain safety. *Environ Sci Pollut Res* **31**, 1674–1680 (2024).

https://doi.org/10.1007/s11356-023-31631-0

