

Modelling of the resistance to compression of dehulled & intact rapeseed under unidirectional pressure.

Sylvie Dauguet, Florian Rousseau, Patrick Carré

(Terres Inovia, Pessac, France)

The challenge of mechanical cold extraction of dehulled seeds

Without hulls, it becomes difficult to operate the presses:

- The cake out-flow becomes slow
- Oil yield decreases
- Total throughput falls sharply because rotational speed has to be reduced to maintain extraction performance

Current state of knowledge

Raβ thesis (mechanical extraction of dehulled OSR in piston press):

- Oil drainage in the press cake related to kinetic of compression.
 - A constant compression leads to degraded permeability
 - Evolutive compression with relaxations period can prevent the loss of permeability
- Effect of the rheological behaviour of the material too complex for being modelled (small changes in the parameters can lead to huge variations in the compression kinetics).
- Hulls are playing a role in maintaining the cake permeability during compression

2023 SYE

BAL CROP - GOLDEN OPPORTUNITI

Material and methods

<u>Unidirectional micropress :</u> Universal Mecmesin bench

- Fine measure of the piston displacement piston (μm)
- Force up to 50 kN

Cell of compression

- diameter 40 mm
- Filtering bottom plate
- Temperature regulation
- Pressure max 350 bar

Mass of material : 15 g

Stainless steel filtering cloth at the bottom of the cell for avoidance of material extrusion $^{\sim}$ 80 μm

Study of dehulled rapeseed compressibility

- Box Bhenkem experimental design
 - Piston speeds: 0.1, 40 et 80 mm/min
 - Water content: 5, 7 et 9%
 - Temperatures: 30, 65 et 100°C
- Conditions :
 - Comparison between hulled and non-hulled seeds
 - 3 or 4 repetition of the central point
 - Observed variable: force on the piston \rightarrow Stress (bar) = f(Strain)
 - Strain = rate of compression = (initial height actual height) / Initial Height

Explaining the compressive behaviour of rapeseed by the material plasticity

A question of permeability

Modelling the strain x stress curves

The use of a model enabled the irregularities on the curve to be smoothed out:

- Extrusion of material through the filtering bottom
- Mechanical defect of the machine

The model that fitted the observations well was

With:

- a, b, c, d = adjusted constant
- = strain (rate of compression)

C 2023 SYDNE INTERNATIONAL RAPESEED CONGRE 24 - 27 September 2023 DBAL CROP - GOLDEN OPPORTUNITI

A simple way to summarise the information contained in the curves

Simplification \rightarrow

- Maximum strain (S_{max}) : strain at 350 bar
 Higher strain = more volume reduction
- Pressure at 66 % of Smax_x (P_{0.66})
 = Resistance of the cake at 66 % of the piston stroke

Wanted :

S_{max} highest possible value

 $P_{0.66}$ Lowest possible value

69.9

With H: 0 for dehulled, 1 for whole seeds W: water content(g/100g) (mm/min)

Adj- R^2 = 0.886 F-statistic 40.12 on 6 and 24 DF, P-value 2.35 10^{-11}

Higher speeds \rightarrow lower compressibility

69.9

Hulled
 Whole seeds

With

H : 0 for dehulled, 1 for whole seeds W: water content(g/100g) (mm/min) Adj-R² = 0.886

F-statistic 40.12 on 6 and 24 DF, P-value 2.35 10^{-11}

Effect of piston speed

Piston speed (mm/min)

GLOBAL CROP - GOLDEN OPPORTUNITIES

COMPRESSIBILITY STUDIES

99 HW

With

H : 0 for dehulled, 1 for whole seeds W: water content(g/100g)

Adj-R² = 0.879 F-statistic 55.69 on 4 and 26 DF, P-value 2.24 10⁻¹²

Large difference between hulled and whole seeds → lower P66 for whole seeds

Speed \rightarrow not statistically significant

Effect of water

Modelling

99 HW

With

H : 0 for dehulled, 1 for whole seeds W: water content(g/100g)

 $Adj-R^2 = 0,879$ F-statistic 55,69 on 4 and 26 DF, P-value 2,24 10⁻¹²

Effect of water→ Strong effect

Water content (g/100g, wet basis)

99 HW

With

H: 0 for dehulled, 1 for whole seeds W: water content(g/100g)

 $Adj-R^2 = 0,879$

60

Temperature → effect more **important for low values**

Main results

- **Dehulling** leads to poor compressibility except at low speed
- Increasing the water content reduces $P_{0.66}$ and S_{max}
- **Temperature** is neutral on S_{max} but reduces P_{0.66}

Given that hulling, higher water content and higher temperatures lead to higher cake plasticity, these results may seem counter-intuitive.

 \rightarrow A matrix that is easier to deform might seem at first sight to be easier to compress (?)

INTERNATIONAL RAPESEED CONGRES: 24 - 27 September 2023

Interpretation

Great convergence with $Ra\beta$ works :

- The main driver of compressibility is the permeability of the cake
 - Hulls bring resilience to capillaries and delay collapse under compression forces
 - Water increases plasticity and decreases the capillaries resilience
 - High **speed of compression** leads higher pressure in the cake and faster capillaries collapse
 - **Temperature** has a positive effect on drainage by reducing the oil viscosity but a negative one by increasing the plasticity of the solid residues in the cake.

Conclusion

Emergence of a credible theory to explain the difficulty of oil extraction by mechanical pressing in low-fibre matrices (maintaining the capillary network under compressive stress).

Practical implications for screw presses

1/ Reduce the speed of compression in the zone of first compression:

- High pressure is counterproductive
- Reduce screw rotation speed
- Design of progressive and moderate compression screw geometry

POP - COLDEN OPPOPT

2/ Best conditions → low water content and temperature trade-off between oil viscosity and cake plasticity.
3/ Facilitate oil flow at low pressure → Porosity of the cage
4/ Regenerate porosity in the cake when passing through the

4/ Regenerate porosity in the cake when passing through the cone rings

